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SUMMARY

A second-order-accurate (in both time and space) formulation is developed and implemented for solution of the
three-dimensional incompressible Navier±Stokes equations involving high-Reynolds-number ¯ows past complex
con®gurations. For stabilization, only a fourth-order-accurate arti®cial dissipation term in the momentum
equations is used. The ®nite element method (FEM) with an explicit time-marching scheme based on two-
fractional-step integration is used for solution of the momentum equations. The element-by-element (EBE)
technique is employed for solution of the auxiliary potential function equation in order to ease the memory
requirements for matrix. The cubic cavity problem, the laminar ¯ow past a sphere at various Reynolds numbers
and the ¯ow around the fuselage of a helicopter are successfully solved. Comparison of the results with the low-
order solutions indicates that the ¯ow details are depicted clearly even with coarse grids. # 1997 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Numerical solution of the three-dimensional Navier±Stokes equations has received considerable

attention over the past two decades. For a numerical technique to respond to the demands of current

developments, however, the scheme involved must be high-order-accurate, fast and ef®cient as far as

memory requirements and computing times are concerned.

Recent advances in iterative solution techniques have enabled CFD researchers to solve large-scale

problems in acceptable computation times with the fast processors of the 1990s. These iterative

solvers have become convenient CFD tools since they do not require excessive computer memories

for either implicit time-marching schemes or inversion of elliptic equations. For ®nite element

computations, element-by-element (EBE) iteration schemes demand the least amount of memory. In

this connection the conjugate gradient (CG) method becomes an ef®cient and fast-converging

iterative method when applied with preconditioning (PCG) to the discrete form of the equations.1±3

In this study a second-order accurate (in both time and space) scheme is developed and
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implemented for solution of the three-dimensional incompressible Navier±Stokes equations involving

high-Reynolds-number laminar ¯ows about complex con®gurations. To do this, a fourth-order-

accurate arti®cial dissipation term in the momentum equations is used for stabilization. The ®nite

element method (FEM) with an explicit time-marching scheme is used for solution and the EBE

technique is employed in order to ease the memory requirements for storage of the stiffness matrix of

the FEM.3 Since the scheme is time-accurate, the transient nature of the ¯ow ®eld is properly

resolved.

For calibration of the code, ®rstly the cubic cavity problem is solved. The comparison with the

existing literature where spectral methods are employed4 is satisfactory even with quite a coarse grid.

Then, for further calibration of the code, low-Reynolds-number (Re� 100 and 200) ¯ows past a

sphere are solved. After the calibration studies the ¯ow past a sphere at a subcritical Reynolds

number, Re� 162,000, is studied. The recirculating ¯ow features are depicted properly. Finally, to

test the capabilities of the code, the ¯ow past a generic helicopter fuselage is solved. The ¯ow

features and the aerodynamic forces are predicted satisfactorily.

All the computations are performed on a dedicated host machine equipped with an i860 processor

with 32 MB of memory on board.

2. FORMULATION

Starting from the Navier±Stokes equations, a new formulation for a second-order time-accurate

scheme is derived. First the weak formulation of the momentum equations is obtained to form the

necessary integral relations. Using these integral relations and evaluating the integrand at the middle

of the time step to attain second-order accuracy, the time-integrated form of the momentum equations

is obtained. The spatial discretization of the equations, on the other hand, is performed using eight-

node hexahedral elements with trilinear shape functions.5 Since the ¯ow Reynolds number is high, a

fourth-order arti®cial viscosity term is explicitly added to the momentum equations for stabilization.

The following subsections describe these formulations.

2.1. Integral formulation

The equations governing the ¯ow of an incompressible viscous ¯uid are

H � u � 0; �1�

@u

@t
� u � Hu � ÿHp� 1

Re
H2u: �2�

The equations are written in vector form (boldface symbols denote vector or matrix quantities). The

variables are non-dimensionalized using a reference velocity and a characteristic length as usual.

Re � Ul=n is the Reynolds number, where U is the reference velocity, l is the characteristic length

and n is the kinematic viscosity of the ¯uid. The velocity vector, pressure and time are denoted by u,

p and t respectively.

The weak form of equation (2) over the space±time domain reads as�
O

�
t

@u

@t
� N dO dt �

�
O

�
t

ÿu � Huÿ Hp� 1

Re
H2u

� �
� N dO dt; �3�
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where N is an arbitrary weighting function. The time integration of both sides of equation (3) for half

a time step, Dt=2, from time step n to n� 1
2
, where the integrand of the right-hand side is evaluated at

time level n, gives�
O
�un�1=2 ÿ un� � N dO � Dt

2

�
O
ÿu � Huÿ Hp� 1

Re
H2u

� �n

� N dO: �4�

At the intermediate time step the time integration of equation (3), where the convective and viscous

terms are taken at n� 1
2

and the pressure term at time level n, yields�
O
�u*ÿ un� � N dO � Dt

�
O
ÿHpn � ÿu � Hu� 1

Re
H2u

� �n�1=2
" #

� N dO: �5�

For the full time step, however, the averaged value of pressure at time levels n and n� 1 is used to

give �
O
�un�1 ÿ un� � N dO � Dt

�
O
ÿu � Hu� 1

Re
H2u

� �n�1=2

ÿH pn � pn�1

2

" #
� N dO: �6�

On the other hand, taking the divergence of equation (2), expressing it in a weak form and

reordering the integral on the left-hand side results in�
O
H �

�
t

@u

@t
dt

� �
� N dO �

�
O

�
t

H � ÿu � Huÿ Hp� 1

Re
H2u

� �
� N dO dt: �7�

The time integration of equation (7) at the intermediate time step, however, is�
O
H � �u*ÿ un� � N dO � Dt

�
O
H � ÿHpn � ÿu � Hu� 1

Re
H2u

� �n�1=2
" #

� N dO; �8�

while at the full step, again using the averaged pressure gives�
O

H � �un�1 ÿ un� � N dO � Dt

�
O

H � ÿu � Hu� 1

Re
H2u

� �n�1=2

ÿH pn � pn�1

2

" #
� N dO: �9�

Subtracting (8) from (9) and making use of the continuity equation at time levels n and n� 1 yields�
O

H � u*N � dO � Dt

2

�
O
H2�pn�1 ÿ pn� � N dO: �10�

2.2. Numerical formulation

De®ning the auxiliary potential function f � Dt�pn�1 ÿ pn� and choosing N as trilinear shape

functions,5 for the algebraic form of the working equations one can write equations (4) and (5) as

2M

Dt
Va

1 � Ba � PeCa ÿ
A

Re
� D

� �
ua

� �n

; �11�

M

Dt
Va

2 � Pn
e Ca � Ba ÿ

A

Re
� D

� �
ua

� �n�1=2

; �12�
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where a indicates the Cartesian velocity components x, y and z. The discretized form of equation (10)

reads as

1
2

Af � Eaua*: �13�
Finally, subtracting equation (5) from (6) and performing the integrals results in

MVa
3 � 1

2
Eaf: �14�

A similar formulation is also given by Webster and Townsend.6 The element auxiliary potential fe is

de®ned as

fe �
1

vol�Oe�
�
Oe

Nifi dOe; i � 1; . . . ; 8;

where O is the ¯ow domain and Ni are the shape functions. In the formulation given above, u* is an

intermediate velocity vector ®eld which is not solenoidal.

In equations (11)±(14), M is the lumped element mass matrix, D is the advection matrix, A is the

stiffness matrix, C is the coef®cient matrix for pressure, B is the vector due to boundary conditions

and E is the matrix due to incompressibility, V1;V2 and B3 denote the velocity vector differences

V1 � un�1=2 ÿ un; �15a�
V2 � u*ÿ un; �15b�
V3 � un�1 ÿ u*: �15c�

2.3. Arti®cial dissipation

In the present study a fourth-order-accurate arti®cial dissipation term in the momentum equations

is used for stabilization. The diffusion term is added explicitly to the right-hand side of equations (11)

and (12). The two-dimensional formulation given in Reference 7 is here extended to three

dimensions. Accordingly, the arti®cial viscosity term is computed in two steps at the element level.

First a second-order differencing is accomplished with

D2
i �

P8
j�1

Vj ÿ 8Vi: �16�

These values give the second-order distributions to cell corners i for the momentum equations. Then

fourth-order distributions to cell corners are formed using the values obtained from equation (16):

D4
i �

P8
j�1

D2
j ÿ 8D2

i : �17�

These fourth-order viscosity terms are multiplied by a certain coef®cient when added to the

momentum equations. For all the Cartesian velocity components the coef®cient of arti®cial viscosity

is kept the same, c4 1
24

. No dissipation term is added to the Poisson equation for the auxiliary

potential.

2.4. Boundary and initial conditions

As initial conditions, uniform freestream conditions are given for the ¯ow domain, while the solid

surface is an exception with the no-slip condition.
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As boundary conditions, however, freestream conditions are imposed at the far ®eld and fully

developed ¯ow conditions are applied at the far wake. Imposing these boundary conditions on the

momentum equations (11) and (12) is quite simple, since the velocity vector differences are zero at

the boundaries where the velocity vector is speci®ed.

For the auxiliary potential, f is set to zero at the far wake and @f=@n is speci®ed as zero on the

solid surface and at the far ®eld where freestream conditions prevail.

2.5. Solution procedure

In order to solve the ¯ow past an arbitrary body, the equations are integrated in time with the

following procedure.

Starting from the time step where un and pn are given:

1. Equation (11) is solved to obtain V1 and, using equation (15a), un�1=2 is determined.

2. Using un�1=2;V2 is obtained from equation (12) and, implementing equation (15b), u* is

determined.

3. The auxiliary potential f is obtained using u* in equation (13).

4. With this f, V3 is determined via equation (14) and, using equation (15c), the new time level

velocity ®eld un�1 is calculated. The associated pressure ®eld pn�1 is determined from the old

time level pressure ®eld pn and f obtained in step 3.

The above procedure is repeated until the desired time level. The accuracy of the solution and the

preconditioning for solving the auxiliary potential equation are given in detail in Reference 8.

3. RESULTS AND DISCUSSION

For calibration of the code the cubic cavity problem is solved using the ®rst-9 and second-order-

accurate schemes. Initially the grid used is fairly coarse, 11611611. Then solutions with ®ner grids,

21621 and 31631, are obtained. Figures 1(a) and 1(b) indicate that the second-order scheme

reaches the grid-independent solution faster than the ®rst-order scheme. The ®rst-order scheme with

second-order arti®cial dissipation gives low velocity gradients in the vicinity of the walls as seen in

Figures 1(a) and 1(b). The second-order-accurate scheme, on the other hand, predicts the velocity

pro®les, even with a coarse grid, in agreement with the results given by pseudospectral methods4

where high-order approximations are used.

Shown in Figures 1(c) and 1(d) are the symmetry plane velocity vectors obtained with the ®rst- and

second-order schemes respectively. The ¯ow Reynolds number based on the lid velocity and cavity

depth is 1000 and the dimensionless time level is 30 where the steady state is practically reached.

Then, for further calibration of the code, low-Reynolds-number (Re� 100 and 200) ¯ows past a

sphere are solved. The symmetric half-grid around the sphere consists of 15,425 points and 14,112

brick elements. The steady state streamline polts at Re� 100 and 200 are shown in Figures 2(a) and

2(b) respectively on the symmetry plane. The separation points �ys� and the extent of the recirculatory

region �lw=D� are seen in these plots. The present values are listed in comparison with the

computational values of Rimon and Cheng10 and the experimental values of Taneda (reproduced

from References 10 and 11) in Table I. All three predictions are in close agreement, the present

results being closer to the experimental ones. The computed drag coef®cient values are CD � 1�07 for

Re� 100 and CD � 0�78 for Re� 200. Cantaloube et al.12 predict CD � 0�76, while the Reference 10

value is CD � 0�77 for Re� 200. The experimentally determined value of Allen (taken from
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Reference 11) is about CD � 0�8. All these values and the values for Re� 100 are plotted in Figure 3.

In order to observe the effect of grid size on the drag coef®cient, two more computations are

performed with two different grids for Re� 100. The sensitivity of CD to the grid resolution is shown

in Table II.

The pressure coef®cient values in comparison with the axisymetric ¯ow calculations10 are shown

in Figures 4(a) and 4(b) for Re� 100 and 200 respectively. There is a slight discrepancy in the wake

region for Re� 100, while there is some discrepancy in the region where the ¯ow accelerates

�60 < y < 100, where y � 0 is the front stagnation point) for Re� 200. The drag coef®cient variation

with respect to the Reynolds number, however, shows better agreement with the experimental values

as seen in Figure 3.

Figure 1. (a, b) Cubic cavity velocity pro®les for Re� 1000 in comparison with results of pseudospectral method4 on symmetry
plane at steady state. (c, d) Flow velocity vectors on symmetry plane. Present solutions with ®rst- and second-order-accurate

schemes are shown
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Figure 2. Steady state streamlines for ¯ow around sphere at Re� (a) 100 and (b) 200 on symmetry plane

Figure 3. Computed drag coef®cient (CD) values versus Reynolds number in comparison with other numerical calculations and
experimental data
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As a second study the laminar ¯ow past a sphere at a high Reynolds number, Re� 162,000, is

solved using both the ®rst9 and second-order schemes. The symmetric half-grid around the sphere

consists of 19,127 and 17,640 brick elements. Figures 5(a) and 5(b) show the details of the grid on the

symmetry plane and around the body respectively, where in the latter case 617 points on the

symmetric half of the sphere surface and 31 points in the radial direction are used. In Figures 6(a) and

6(b) the velocity vectors obtained with the ®rst- and second-order schemes respectively at the

symmetry plane at about time level T� 4 are plotted. The length of the vortex ring, appearing on the

symmetry plane, predicted with both approaches is almost the same, but the width differs

signi®cantly. The second-order-accurate scheme predicts the maximum value of the separation angle

close to the value given in Reference 13 (Table I). As seen in Figures 6(a) and 6(b), the ¯ow appears

to be symmetric with respect to the equatorial plane and in the upper half of the plane there is a major

clockwise recirculating vortex. The details in the separation region, however, are predicted with the

second-order-accurate scheme as seen in Figure 6(b), where a smaller vortex with clockwise rotation

is present upstream of the major vortex ring. A more detailed picture of the vortex right after the

shoulder is provided in Figure 7(b), where there is a very small counterclockwise rotating vortex in

Table I. Comparision of various parameters for ¯ow about sphere with data and other
computations

Re Reference CD CDf
=CD lw=D ys (deg)

100 present 1�07 0�51 0�93 55
100 Taneda10,11 Ð Ð 0�9 55
100 Rimon and Cheng10 1 Ð 0�86 53�5
100 Data10,11 1±1�1 Ð Ð Ð
170 Taneda10,11 Ð Ð 1�12 60
200 Present 0�78 0�45 1�2 61�5
200 Rimon and Cheng10 0�76 Ð 1�06 64
200 Cantaloube et al.12 0�77 Ð Ð Ð
290 Taneda10,11 Ð Ð Ð 67

162000 Present 0�30 0�01 1�5 88
162000 Achenbach13 0�51 0�014 1�5 97
162000 Data11±13 0�12±0�51 Ð Ð Ð

Table II. Sensitivity of CD to grid resolution for
Re� 100

Distance from surface
Grid Drsurface CD

Fine 0�0203 1�07
Medium 0�0336 1�04
Coarse 0�0589 0�98
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between the major and minor clockwise rotating vortices. All these details are smeared out with the

®rst-order method as seen in Figure 7(a), even with ®ner resolution in the radial direction. The

solution is carried out to further time levels to see the vortex shedding behind the sphere.

In Figures 8(a) and 8(b) the calculated streamline patterns are shown on the symmetry plane (x±y

plane) and on the equatorial plane (x±z plane) respectively at the dimensionless time level T� 17,

where the symmetry is weakened as compared with the earlier time levels. The details of the primary

and secondary vortices rotating in the same direction and a smaller counter-rotating vortex are

depicted clearly on the symmetry plane. On the equatorial plane, however, only the presence of the

primary vortex is apparent. This indicates that at that instant, small vortices cannot stretch from the

upper to the lower shoulder of the cylinder. The natural start of the vortex shedding, without any

arti®cial disturbances, is observed in Figure 9, where streamlines are drawn at T� 21�4 on the

symmetry plane (x±y plane). The calculated drag coef®cient value is CD � 0�28 and the lift

coef®cient value is CL � 0�18 at that instant.

The comparison between the calculated and experimental surface pressure coef®cient distributions

on the symmetry plane is given in Figure 10. The calculated pressure values are not symmetric at the

given instant T� 21�4 and the lower surface pressure distribution agrees well with the experimental

data,13 just provided for half of the sphere, before the shoulder. In the recirculation region, however,

the appearance of secondary vortices is more pronounced with the present calculations than predicted

by experiment. The ratio of the friction force �CDf
� to the total drag �CD� on the sphere is also given in

Table I.

Figure 4. Pressure coef®cient �Cp� values in comparison with axisymmetric ¯ow calculations10 for Re� (a) 100 and (b) 200
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The ®nal problem solved is related to an institutional project for designing a generic helicopter.

The grid around the fuselage is shown in Figures 11(a) and 11(b), where 11,280 brick elements with

12,915 nodes are used to resolve the symmetric half of the ¯ow ®eld. The ¯ow Reynolds number

based on the height of the body (taken as the characteristic length) is 50,000, which corresponds to

low-speed forward ¯ight of the helicopter. Shown in Figures 12(a) and 12(b) are the symmetry plane

streamline plots at about the steady state obtained with the ®rst- and second-order schemes

respectively. The results of the second-order scheme indicate a longer separation region in the wake.

Figure 5. (a) Grid around sphere on symmetry plane. (b) Details of grid around body where 617 points on symmetric half of
sphere surface and 31 points in radial direction are used. Re� 162,000
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(Figure 12(b)). A detailed picture of the wake obtained with the second-order scheme is shown in

Figure 13, where the separation region obtained with the second-order scheme is twice as long as the

separation region obtained with the ®rst-order scheme. Also seen in Figure 12(b) is a small separation

region at the bottom of the fuselage where there is an unfavourable pressure gradient. The ®rst-order

scheme cannot predict that separation region because of high arti®cial diffusion. The detailed picture

of this unfavourable pressure region is provided in Figure 14 as streamlines of the second-order

scheme.

The pressure distribution on the surface of the fuselage at the symmetry plane is given in Figure 15.

According to this ®gure, the pressure values follow, in general, the same trend for both solutions;

Figure 6. Velocity vectors obtained with (a) ®rst- and (b) second-order schemes at symmetry plane at about time level T� 4.
Re� 162,000
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however, the unfavourable pressure gradient region at the bottom surface indicates where the two

solutions do not agree.

Shown in Table III are the drag coef®cient values for the sphere obtained with both schemes

compared with the experimental data given in References 11±13. As can be seen, the ®rst-order

scheme slightly overestimates the coef®cient value, whereas the second-order scheme estimates a

value within the range of experimental values. These values are also plotted in Figure 3. The drag

coef®cient values evaluated for the helicopter fuselage with both schemes are also given in Table III.

Figure 8. Calculated streamline patterns on (a) equatorial plane (x±z plane) and (b) symmetry plane (x±y plane) at
dimensionless time level T� 17. Re� 162,000

Figure 7. Velocity vector details on right shoulder of sphere on symmetry plane obtained with (a) ®rst- and (b) second-order
schemes. Re� 162,000
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Figure 10. Comparison between calculated and experimental13 surface pressure coef®cient �Cp� distributions on symmetry
plane. Re� 162,000

Figure 9. Natural start of vortex shedding (without any arti®cial disturbances) where streamlines are drawn at T� 21�4 on
symmetry plane (x±y plane). Re� 162,000

Table III. Drag coef®cient vlaues for sphere and helicopter
fuselage

Geometry Re Scheme CD

Sphere 162000 Data11±13 0�12±0�51
First-order 0�52
Second-order 0�30

Fuselage 50000 First-order 0�20
Second-order 0�11
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For all case studies the computations are performed on a computer equipped with an i860

processor. The average computation per time step per grid point takes approximately 0�0006 s of CPU

time. The time steps used are between 0�003 and 0�01 depending on the minimum characteristic

length of a brick element and the ¯ow Reynolds number. This is to satisfy the stability criteria given

in Reference 3.

Figure 11. (a) Grid on symmetry plane and (b) near-body details around helicopter fuselage; 11,280 brick elements with 12,915
nodes are used to resolve symmetric half of ¯ow ®eld
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4. CONCLUSIONS

A computer code based on a second-order-accurate scheme is developed and implemented for ¯ows

involving large separations and strong recirculations about arbitrary shapes. The accuracy achieved in

time and space allows us to take large time steps using coarse grids.

The results obtained for various test cases are in good agreement with the existing numerical and

experimental data.

The code is implemented satisfactorily to predict the drag coef®cient of a generic helicopter

fuselage.

Figure 12. Symmetry plane streamlines at about steady state obtained with (a) ®rst- and (b) second-order scheme. Re� 50,000

Figure 13. Details of separation bubble obtained with second-order scheme
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